Clean water and how current policy is failing – an arsenic study

On the back of the post on running water availability came a study of the impact of federal level policy and regulation on arsenic in drinking water. The report was published in Environmental Health Perspectives and summarized in Science Daily. A key inference is two-fold; first, the impact of past policy and legislation had differing outcomes based on community (both sociologically and geographically), and second, broad environmental policy may not work with national standards and may need to be tailored for geography and at-risk socio-economic communities. – Something US has failed to do … completely.

Here is the author’s objective, quote: “‘Our objective was to identify subgroups whose public water arsenic concentrations remained above 10 µg/L after the new maximum arsenic contaminant levels were implemented and, therefore, at disproportionate risk of arsenic-related adverse health outcomes such as cardiovascular disease, related cancers, and adverse birth outcomes,” said Ana Navas-Acien, PhD, Professor of Environmental Health Sciences and senior author.”

Here’s the activity and investigation, quote:

The researchers compared community water system arsenic concentrations during (2006-2008) versus after (2009-2011) the initial monitoring period for compliance with EPA’s 10 µg/L arsenic maximum contaminant level (MCL). They estimated three-year average arsenic concentrations for 36,406 local water systems and 2,740 counties and compared differences in means and quantiles of water arsenic between both three-year periods for U.S. regions and sociodemographic subgroups.

Analyses were based on data from two of the largest EPA databases of public water available. Using arsenic monitoring data from the Third Six Year Review period (2006-2011), the researchers studied approximately 13 million analytical records from 139,000 public water systems serving 290 million people annually. Included were data from 46 states, Washington D.C., the Navajo Nation, and American Indian tribes representing 95 percent of all public water systems and 92 percent of the total population served by public water systems nationally.

Here’s their findings, quote:

For 2006-2008 to 2009-2011, the average community water system arsenic concentrations declined by 10 percent nationwide, by 11.4 percent for the Southwest, and by 37 percent for New England, respectively. Despite the decline in arsenic concentrations, public drinking water arsenic concentrations remained higher for several sociodemographic subgroups — Hispanic communities, the Southwestern U.S, the Pacific Northwest, and the Central Midwest., in particular. Likewise, communities with smaller populations and reliant on groundwater were more likely to have high arsenic levels.

The percent of community water systems with average concentrations arsenic above the 10 µg/L MCL was 2.3% in 2009-2011 vs. 3.2% in 2006-2008. Community water systems that were not compliant with the arsenic MCL were more likely in the Southwest (61 percent), served by groundwater (95 percent), serving smaller populations (an average of 1,102 persons), and serving Hispanic communities (38 percent).

And following the science article format, their recommendations, quote:

Nigra and Navas-Acien say that estimating public drinking water arsenic exposure for sociodemographic and geographic subgroups is critical for evaluating whether inequalities in arsenic exposure and compliance with the maximum contaminant levels persist across the U.S, to inform future national- and state-level arsenic regulatory efforts, and to investigate whether inequalities in exposure by subgroup contribute to disparities in arsenic-related disease. “Our findings will help address environmental justice concerns and inform public health interventions and regulatory action needed to eliminate exposure inequalities.” “We urge continued state and federal funding for infrastructure and technical assistance support for small public water systems in order to reduce inequalities and further protect numerous communities in the U.S. affected by elevated drinking water arsenic exposure,” said Nigra.

It’s more than availability to running water; it’s also that that running water is safe, clean and always on for everybody!

Leave a Reply

Your email address will not be published. Required fields are marked *